129 research outputs found

    Batch Reinforcement Learning from Crowds

    Full text link
    A shortcoming of batch reinforcement learning is its requirement for rewards in data, thus not applicable to tasks without reward functions. Existing settings for lack of reward, such as behavioral cloning, rely on optimal demonstrations collected from humans. Unfortunately, extensive expertise is required for ensuring optimality, which hinder the acquisition of large-scale data for complex tasks. This paper addresses the lack of reward in a batch reinforcement learning setting by learning a reward function from preferences. Generating preferences only requires a basic understanding of a task. Being a mental process, generating preferences is faster than performing demonstrations. So preferences can be collected at scale from non-expert humans using crowdsourcing. This paper tackles a critical challenge that emerged when collecting data from non-expert humans: the noise in preferences. A novel probabilistic model is proposed for modelling the reliability of labels, which utilizes labels collaboratively. Moreover, the proposed model smooths the estimation with a learned reward function. Evaluation on Atari datasets demonstrates the effectiveness of the proposed model, followed by an ablation study to analyze the relative importance of the proposed ideas.Comment: 16 pages. Accepted by ECML-PKDD 202

    Label Selection Approach to Learning from Crowds

    Full text link
    Supervised learning, especially supervised deep learning, requires large amounts of labeled data. One approach to collect large amounts of labeled data is by using a crowdsourcing platform where numerous workers perform the annotation tasks. However, the annotation results often contain label noise, as the annotation skills vary depending on the crowd workers and their ability to complete the task correctly. Learning from Crowds is a framework which directly trains the models using noisy labeled data from crowd workers. In this study, we propose a novel Learning from Crowds model, inspired by SelectiveNet proposed for the selective prediction problem. The proposed method called Label Selection Layer trains a prediction model by automatically determining whether to use a worker's label for training using a selector network. A major advantage of the proposed method is that it can be applied to almost all variants of supervised learning problems by simply adding a selector network and changing the objective function for existing models, without explicitly assuming a model of the noise in crowd annotations. The experimental results show that the performance of the proposed method is almost equivalent to or better than the Crowd Layer, which is one of the state-of-the-art methods for Deep Learning from Crowds, except for the regression problem case.Comment: 15 pages, 1 figur

    Behavior Estimation from Multi-Source Data for Offline Reinforcement Learning

    Full text link
    Offline reinforcement learning (RL) have received rising interest due to its appealing data efficiency. The present study addresses behavior estimation, a task that lays the foundation of many offline RL algorithms. Behavior estimation aims at estimating the policy with which training data are generated. In particular, this work considers a scenario where the data are collected from multiple sources. In this case, neglecting data heterogeneity, existing approaches for behavior estimation suffers from behavior misspecification. To overcome this drawback, the present study proposes a latent variable model to infer a set of policies from data, which allows an agent to use as behavior policy the policy that best describes a particular trajectory. This model provides with a agent fine-grained characterization for multi-source data and helps it overcome behavior misspecification. This work also proposes a learning algorithm for this model and illustrates its practical usage via extending an existing offline RL algorithm. Lastly, with extensive evaluation this work confirms the existence of behavior misspecification and the efficacy of the proposed model.Comment: Accepted by AAAI 2023. Fixed errors in Fig. 4 presented in the camera-ready version and Table
    • …
    corecore